

MEMORANDUM

Ainley Graham & Associates Limited 139 Front Street Unit 100, Belleville, ON K8N 2Y6 Tel: (613) 966-4243 P Fax: (613) 966-1168

To: Lorelei Jones

Copy to: File

From: Caitlin Sheahan

Date: January 23, 2020

Ref: Hanley Park Draft Plan Application – Flow Monitoring Review **File:** 18578-1

1.0 Background

Hanley Park Developments Inc. is proposing a Draft Plan of Subdivision to the east of Victoria Ave and Mercedes Drive in Belleville, Ontario, to be named Hanley Park North. The subject property is 35.2 hectares (ha) in size, of which 11.3 ha is developable. The current draft plan for the development has a total of 57 townhouse units and 99 single family units (**Figure 1**). The proposed development is separated into two development areas: an extension of Spruce Gardens and an extension of Tessa Boulevard, with the majority of the development extending from Tessa Boulevard.

The subject lands are not currently zoned for residential development. As such, they have not been incorporated into the City's master servicing plan for sanitary sewer allotment. The developers have therefore undertaken a flow monitoring program of the City's sanitary sewers downstream of the development, in order to determine actual flow usage and assess the available capacity for the proposed development. The purpose of this memo is to provide a review of the flow monitoring program results and the available capacity within the City's sanitary sewers downstream of the development site.

2.0 Existing Conditions

2.1 Mercedes Meadows Infrastructure

The development is proposed to connect to the eastern limits of Tessa Boulevard and Spruce Gardens within the recently constructed Mercedes Meadows subdivision (**Figure 1**). The sanitary sewers within the east end of Tessa Boulevard are 375mm diameter PVC. Immediately downstream of these sewers are 525mm diameter PVC sewers. The Tessa Boulevard sewers were sized to accommodate potential future development to the east of Mercedes Meadows. They are designed to accommodate 16.4 ha of development, assuming 50 people per hectare (i.e. population of 820 persons; **Appendix A**). The proposed Hanley Park North development east of Tessa Boulevard would have an estimated population of 422 people (2.5 people per townhouse unit, 3 people per single family unit). As such, the Tessa

Boulevard sewers have sufficient capacity for Hanley Park North.

The Spruce Gardens sanitary sewers are 200mm diameter PVC. The sanitary sewer design incorporated lands to the east of Spruce Gardens, and allowed for a population of 160 persons (**Appendix A**). The proposed Hanley Park development shows only 6 single family units to the east of Spruce Gardens (i.e. 18 persons); the Spruce Gardens sewers therefore have sufficient capacity to support the proposed units.

2.2 City of Belleville Infrastructure

The Mercedes Meadows sanitary flows are conveyed to Haig Road sewers. The Haig Road flows are part of the Bayshore Trunk Sanitary Sewer catchment area (**Figure 2**). The sewers are 600mm diameter concrete and are designed for a peak flow of 178.04 L/s, as shown in the City's sanitary sewer design sheet (**Appendix A**). The sewers ultimately flow downstream to the Keegan Parkway sewers, which are 900mm diameter concrete and designed for a peak flow of 434.37 L/s.

2.3 Future Development within Catchment Area

The Bayshore Trunk Sanitary Sewer catchment area (**Figure 2**) shows areas that are not yet developed, but will be allowed to connect into the system as they have been allocated within the sewer system design. The build-out shown in **Figure 2** is from 2014 and is therefore partially dated. For example, the Mercedes Meadows subdivision is approximately 95% built-out as of the fall of 2019, and further development has proceeded in the Laird Drive area and Bell Creek residential subdivision.

The only major development that is allocated within the sewer system and not yet developed is the Hanley Park subdivision, which is draft approved for 280 units, and will connect to Bridge Street East and Victoria Ave. The subdivision will comprise approximately 33 hectares, with an estimated population of 840 persons. As such, the design flows anticipated from the draft approved Hanley Park subdivision are 22.3 L/s. Besides the Hanley Park development, the Bayshore Trunk Sewer catchment area appears to be 90% built out as of the fall of 2019.

3.0 Proposed Conditions

The Hanley Park North development plan proposes 6 new units (single family) to connect to the east end of Spruce Gardens, and 150 new units connect to the east end of Tessa Blvd (93 single family units and 57 townhouse units). The sanitary sewer flows that would be anticipated to be generated from this size of development is as follows:

- 1) 0.6 L/s peak flow to the east end of Spruce Gardens
- 2) 9.6 L/s peak flow to the east end of Tessa Boulevard.

Supporting calculations for the anticipated sanitary flows for Hanley Park North are included in **Appendix B**.

4.0 Monitoring Program

Flow monitoring was carried out by FlowMetrix Technical Services Inc. Monitors were installed on November 8, 2018 and removed January 16, 2019. The monitors were installed in two (2) sanitary manholes, at the following locations:

- 1) 665 Dundas Street East. This manhole is close to the Dundas Street East and Haig Road intersection. The sewer at this location is 600mm diameter concrete pipe.
- 2) Parking Lot at the end of Foster Ave, in south Foster Park. This manhole is within a pedestrian area. The sewer at this location is 900mm diameter concrete pipe.

The flow monitors collected data constantly for the nine weeks that they were installed. The data collected included flow (Q) in litres per section (I/s), depth (mm), and velocity (m/s). The full report prepared by FlowMetrix is provided in **Appendix C**. It describes the monitoring program and data collected in detail. **Tables 1** and **2** show the average flow, depth, and velocity collected during the monitoring period for each manhole.

Observed Flow Conditions									
	Depth (mm)	Velocity (m/s)	Flow (L/s)						
Average	163	0.371	23.48						
Minimum	129	0.241	11.34						
Maximum	236	0.555	56.63						

Table 1: Dundas St E / Haig Road Manhole Data

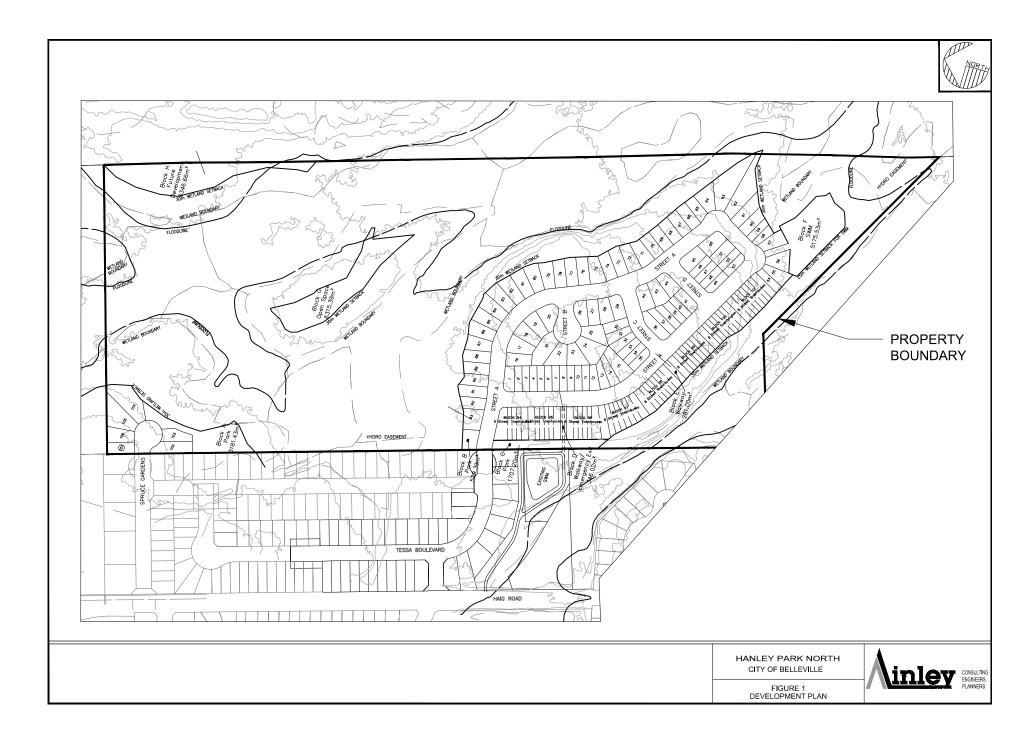
Table 2: Foster Park Manhole Data

Observed Flow Conditions									
	Depth (mm)	Velocity (m/s)	Flow (L/s)						
Average	295	0.482	89.06						
Minimum	190	0.168	27.62						
Maximum	758	0.746	241.87						

5.0 Results

As shown in **Tables 1** and **2**, the maximum flows observed throughout the monitoring period were 56.63 L/s for the Dundas St E / Haig manhole and 241.87 L/s for the Foster Park manhole. These values are significantly less than the peak flows that the sewers are designed for: 178.04 L/s and 434.37 L/s, respectively (**Appendix A**). Section 8.5.4 of the MOE Design Guidelines for Sewage Works (2008) states, "Wherever there are existing sewers and / or existing sewage treatment plants, the flow rates and sewage characteristics should be determined using real data".

As outlined in Section 2.3 above, the entire catchment area for the Bayshore Trunk Sanitary Sewer has not yet been fully built-out. There are developments that will be allowed to connect to the sewers and these future flows need to be incorporated into this review. The largest area remaining to be built out is the future Hanley Park subdivision, with estimated flows of 22.3 L/s. To account for the remainder of other areas in the catchment to be built out, 10% of the peak design flow (i.e. 43.4 L/s) will be added to the review. Therefore, the flows anticipated from the remaining development to be built-out within the Bayshore Trunk catchment area are 65.7 L/s (i.e. 22.3 + 43.4 L/s).


As outlined in Section 3.0 above, the sanitary sewer flows anticipated from the proposed Hanley Park North development are a total of 10.2 L/s. **Table 3** outlines the addition of flows anticipated from the remaining development to be constructed within the catchment area (65.7 L/s) and the anticipated peak flows from Hanley Park North to the maximum observed flows through the Dundas St E / Haig Road and Foster Park sewers.

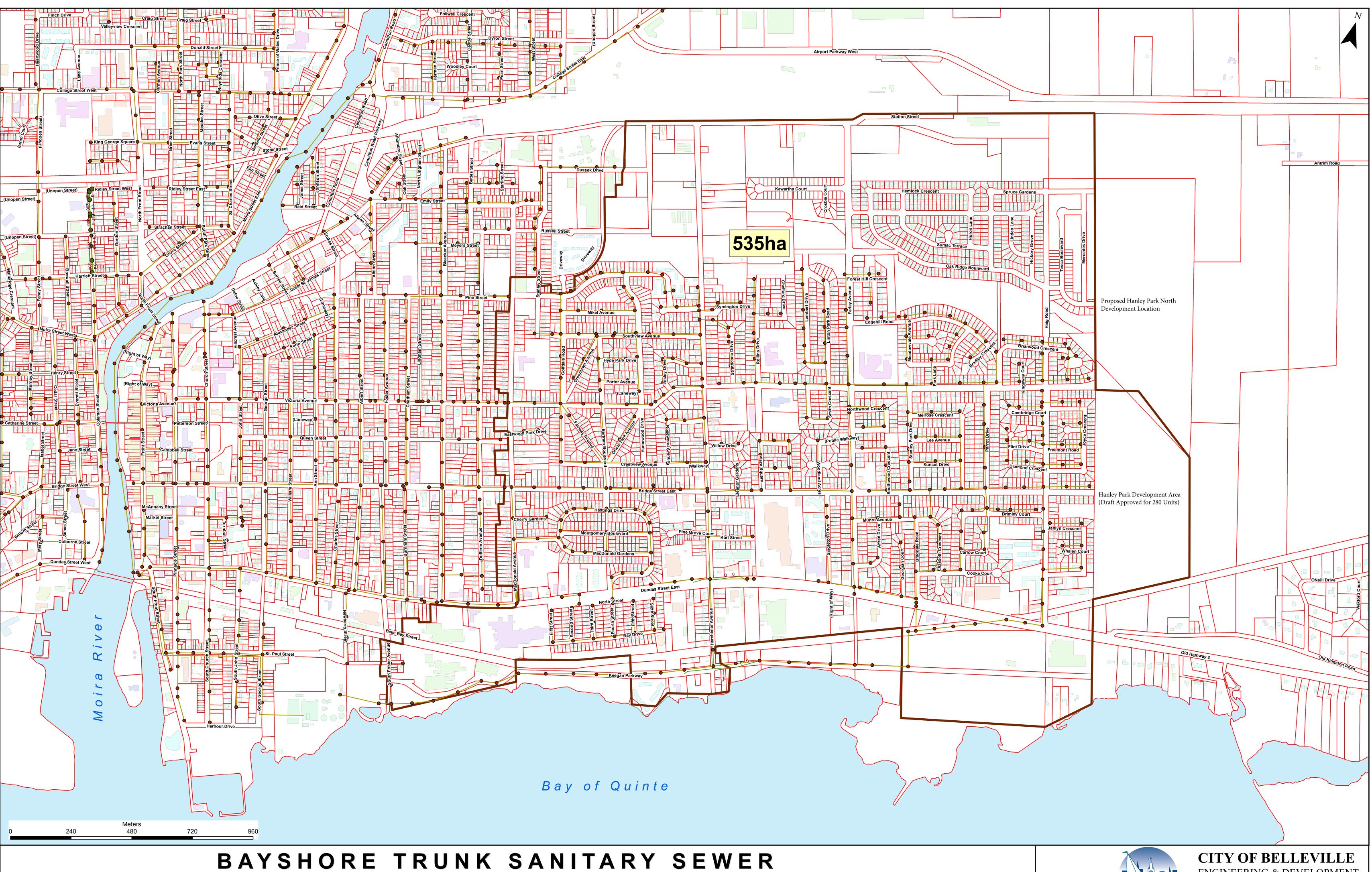
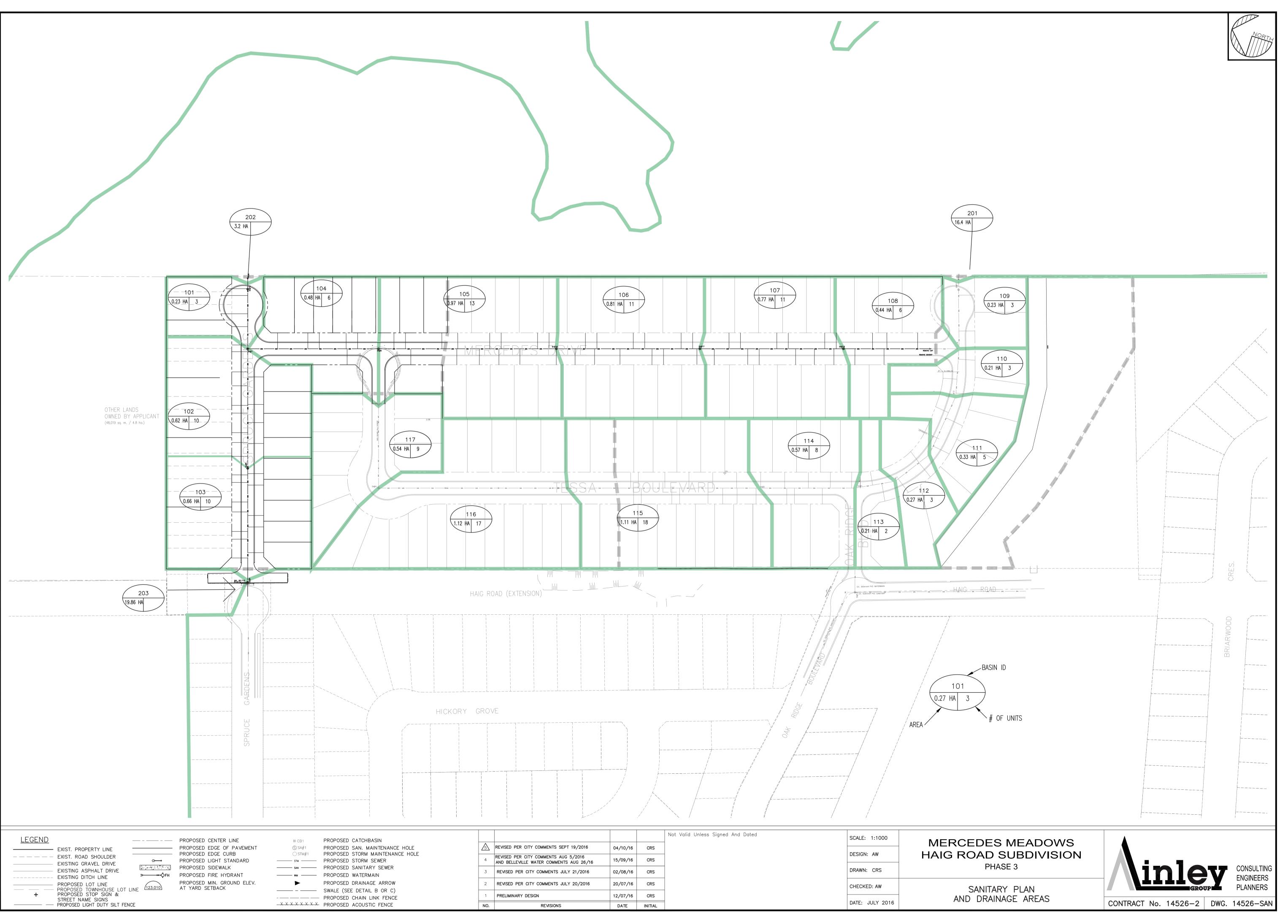

Manhole Monitoring Location	Flows Anticipated from Remaining Development within Bayshore Trunk Catchment (L/s)	Anticipated Hanley Park North Flow (L/s)	Maximum Observed Flows in Monitoring Program (L/s)	Total (L/s)	Original Sewer Design Flow (L/s)
Dundas St E	E 65.7	10.2	56.63	132.53	178.04
/ Haig Road Foster Park	65.7	10.2	241.87	317.77	434.37

Table 3: Comparison of Observed Flow to Design Flow

6.0 Conclusion

Table 3 shows that even with the addition of the anticipated flows from the Hanley Park North development, there should still be adequate capacity in the existing sewers, as the original design flows for the sewers far exceed the value of Observed Flows + Hanley Park Flows + Future Catchment Build Out Flows. Based on the above, the existing Mercedes Meadows, Haig Road, and Keegan Parkway infrastructure (Bayshore Trunk Sanitary Sewer Catchment Area) has capacity for the additional flows anticipated from the Hanley Park North development.

Catharin


SEWER CATCHMENT AREA

CITY OF BELLEVILLE ENGINEERING & DEVELOPMENT SERVICES DEPARTMENT September, 2014

APPENDIX A Existing Sanitary Design Information

				Not Valid Unless Signed And Dated	SCALE: 1:1000	
5	REVISED PER CITY COMMENTS SEPT 19/2016	04/10/16	CRS			MERCED
4	REVISED PER CITY COMMENTS AUG 5/2016 AND BELLEVILLE WATER COMMENTS AUG 26/16	15/09/16	CRS		DESIGN: AW	HAIG ROA
3	REVISED PER CITY COMMENTS JULY 21/2016	02/08/16	CRS		DRAWN: CRS	
2	REVISED PER CITY COMMENTS JULY 20/2016	20/07/16	CRS		CHECKED: AW	SAN
1	PRELIMINARY DESIGN	12/07/16	CRS			AND DF
NO.	REVISIONS	DATE	INITIAL		DATE: JULY 2016	

Mercedes Meadows - Phases 3 and 4

Sanitary Design Sheet

CITY OF BELLEVILLE

cirr or																			GROUP	
Project:	14526-2	RATI	ONAL	METHOD)	Qtotal	$= \mathbf{Q}\mathbf{p} + \mathbf{Q}$	Qi	HARMON	FORMULA						DESIGN ASS				
			Where:	Qp = peak	population	flow (L/s)		M = 1 +		_		Des	ign Flow F	Rates for are	a greater 50ha:	0.84 L/s/ha (incl. infiltr	ation)	
Revised:	July 13, 2016				I / 86.4 (L/s											(2.5 Persons/Unit - Townhouses)				
				where M =					where P p	opulation in	1000's		Residential (q): 350 Lpcd							
Prepared by:	CRS			Qi = peak		flow (L/s))								E	Extraneous (i) : N-value =				
				= i * A	A (L/S)			arar	TT OTTO						GEWIER		0.015			
	LOCATION		-	(FLOWS						SEWER	DATA		-		
					DIVIDUA		CUMUL		PEAKING		FLOWS									
AREA #	STREET	FROM	-	# of	POP	AREA	POP	AREA	FACTOR	RES	EXTRAN	TOTAL	DIA.	SLOPE				Q/Qcap	Comments	
		MH	MH	UNITS	(persons)	(ha)	persons	(ha)	(M)	Qp (L/s)	Qi (L/s)	Qt (L/s)	(mm)	(%)	(m)	(L/s)	(m/s)	%		
202			0		1	10.04		10.04			1051/4	20.0	250	0.00	1.0	00.57	0.55	0.64		
203	North of Spruce Gardens	0	9	12	25	19.86	25	19.86	4.24	0	1.05 L/s/ha	20.9	250	0.30	1.0	32.57	0.66	0.64		
103 102	Spruce Gardens Spruce Gardens	9	8	13 12	35 32	0.66	35 67	0.66	4.34	0.62	0.18	21.65 22.38	250 250	0.30	75.0 75.0	32.57 32.57	0.66	0.66		
102	Spruce Gardens	0	/	12	32	0.62	0/	1.28	4.29	1.10	0.30	22.38	230	0.50	73.0	52.57	0.00	0.69		
202	East of Spruce Gardens/Cul De	Sac	10	Assuming	50 n/ha	3.20	160	3.20	4.18	2.71	0.90	3.6	200	0.40	7.7	20.74	0.66	0.17		
-	Spruce Gardens	10	7	Assuming 4	10	0.23	170	3.43	4.18	2.71	0.90	3.83	200	0.40	37.4	20.74	0.66	0.17		
101	Spruce Gardens	10	/	-	10	0.23	170	5.45	4.17	2.07	0.70	5.05	200	0.40	57.4	20.74	0.00	0.10		
104	Mercedes Drive	7	6	6	18	0.48	255	5.19	4.11	4.24	1.45	26.55	375	0.15	82.0	67.91	0.61	0.39		
	Mercedes Drive	6	18	13	39	0.97	294	6.16	4.08	4.86	1.72	27.44	375	0.15	111.5	67.91	0.61	0.40		
	Mercedes Drive	18	17	13	39	0.81	333	6.97	4.06	5.48	1.95	28.28	375	0.15	90.0	67.91	0.61	0.42		
	Mercedes Drive	17	16	11	33	0.77	366	7.74	4.04	5.99	2.17	29.01	375	0.15	90.0	67.91	0.61	0.43		
108	Mercedes Drive	16	14	6	18	0.44	384	8.18	4.03	6.27	2.29	29.41	375	0.15	72.4	67.91	0.61	0.43		
201	East of Tessa Boulevard/Cul de	Sac	15	Assuming	50 p/ha	16.40	820	16.40	3.85	12.80	4.59	17.4	375	0.15	5.5	67.91	0.61	0.26		
109	Tessa Boulevard	15	14	3	9	0.23	829	16.63	3.85	12.93	4.66	17.59	375	0.15	37.0	67.91	0.61	0.26		
110	Tessa Boulevard	14	13	3	9	0.21	1222	25.02	3.74	18.52	7.01	46.38	525	0.10	30.0	136.00	0.63	0.34		
111	Tessa Boulevard	13	12	5	15	0.33	1237	25.35	3.74	18.73	7.10	46.68	525	0.10	40.0	136.00	0.63	0.34		
112	Tessa Boulevard	12	11	3	9	0.27	1246	25.62	3.74	18.86	7.17	46.89	525	0.10	28.0	136.00	0.63	0.34		
113	Tessa Boulevard	11	1	2	6	0.21	1252	25.83	3.73	18.94	7.23	47.03	525	0.10	24.6	136.00	0.63	0.35		
115		-				0.54		0.54	1.04	0.40	0.15	0.62	200	0.70	52.2	27.44	0.07	0.02		
117	Tessa Boulevard	5	4	9	27	0.54	27	0.54	4.36	0.48	0.15	0.63	200	0.70	52.3	27.44	0.87	0.02	Phase 2	
116 115	Tessa Boulevard	4	3	17	51 54	1.12	78 <i>132</i>	1.66	4.27	1.35	0.46	1.81 3.03	200 200	0.40	118.4 120.0	20.74	0.66	0.09	Phase 2	
115	Tessa Boulevard Tessa Boulevard	3	2	18 8	24	1.11 0.57	132 156	2.77	4.21	2.25 2.64	0.78	3.03	200	0.40	60.3	20.74 20.74	0.66	0.15		
114	Tessa Boulevara	2	1	ð	24	0.57	130	3.34	4.19	2.04	0.94	3.38	200	0.40	00.3	20.74	0.00	0.17		
			+		+									+						
All	Oak Ridge Boulevard	1	Ex	1	1		1408	29.17	3.70	21.10	8.17	50.12	525	0.10	65.3	136.00	0.63	0.37		
All	Oak Kinge Doulevalu	1	ĽÅ				1400	47.17	5.70	21.10	0.17	50.12	545	0.10	05.5	130.00	0.05	0.57		

Project:

q = average daily per capita flow = 350L/cap/d

I = unit of peak extraneous flow = 0.28L/ha/s

M = peaking factor

Q(p) peak population flow (L/s)

Q(I) peak extraneous flow (L/s)

Q(d) peak design flow (L/s)

Use 2.5 people/Townhouse Unit or 3.0 people/Lot

Design By: Checked By: Date: Sheet:

Industrial/Commercial Flow (ICF) = 1.05 L/ha/s including extraneous flow

M = 1+14/(4+P^{1/2}) where P= population in 1000s $Q(p) = P^*q^*M/86.4$ (L/s) Q(i/c) = IF*A (L/s) where A= Cumulative Industrial/Commercial area in hectares $Q(i) = I^*A (L/s)$ where A= Cumulative Residential area in hectares Q(d) = Q(p) + Q(i) + Q(i/c) (L/s) Q_{Full} =Capacity = (1\n)*A*R^{2/3}*S^{1/2} V_{Full} = Full Flow Velocity = (Q_{Full}/1000)/ π r²

				Resi	dential	Res	idential		Residential	Residential	Industrial	Cumulative	Industrial	Peak			S		RY SEW	ER DATA			
Location	Area	From	То	Indi	vidual	Cun	nulative	Peaking	Population	Extraneous	Commercial	Ind./Comm.	Commercial	Design	Pipe	Type Pi	pe Pi	be C	Capacity	Full Flow			Actual
(Street)	Labels	МН	ΜН	Рор	Area	Рор	Area	Factor	Flow	Flow	Area	Area	Flow	Flow	Diameter		pe Len	gth r	n= 0.013	Velocity	Qa/Qf	Vp/Vf	Velocity
					(ha)		(ha)	(M)	Q(p) (L/s)	Q(i)	(ha)	(ha)	Q(i/c) (L/s)	Q(d) (L/s)	(mm)	Pipe (%	%) (n	1)	(L/s)	Vf (m/s)			Vp (m/s)
From Haig/Dundas		31	30	5095	159.4	###	159.37	3.24	66.81	44.62	63.43	63.43	66.60	178.04	600	0.0)52 1	6 1	39.928	0.49	1.27	1.14	0.56
		30	29			###	159.37	3.24	66.81	44.62		63.43	66.60	178.04	600	0.	34 7	4 3	857.801	1.27	0.50	0.995	1.26
		29	28			###	159.37	3.24	66.81	44.62		63.43	66.60	178.04	600	0.4	88 7	7 43	28.659	1.52	0.42	0.955	1.45
		28	27			###	159.37	3.24	66.81	44.62		63.43	66.60	178.04	600	1.1	28 9	-	51.713	2.30	0.27	0.86	1.98
		27	26			###	159.37	3.24	66.81	44.62		63.43	66.60	178.04	600	1.(83 10	0 6	38.581	2.26	0.28	0.86	1.94
		26	25			###	159.37	3.24	66.81	44.62		63.43	66.60	178.04	600	1.1	55 9		59.467	2.33	0.27	0.86	2.01
		25	С			###	159.37	3.24	66.81	44.62		63.43	66.60	178.04	600	1.(69 7	-	634.440	2.24	0.28	0.87	1.95
From Bradgate		С	24	1134	35.98		195.35	3.16	79.61	54.70	4.47	67.90	71.30	205.60	600	1.(69 3		634.440	2.24	0.32	0.89	2.00
		24	23			###	195.35	3.16	79.61	54.70		67.90	71.30	205.60	600	1.2	266 12		690.429	2.44	0.30	0.875	2.14
From Bakelite (Os	prey Sho	23	22			###	195.35	3.16	79.61	54.70	24.28	92.18	96.79	231.10	600	0.2	212 13	-	282.533	1.00	0.82	1.115	1.11
		22	21			###	195.35	3.16	79.61	54.70		92.18	96.79	231.10	600	0.1	44 5	7 2	232.854	0.82	0.99	1.14	0.94
From Farley		21	20	1808	46.61	###	241.96	3.05	99.24	67.75	16.82	109.00	114.45	281.44	900	0.0	053 10	-	16.558	0.65	0.68	1.07	0.70
		20	19			###	241.96	3.05	99.24	67.75		109.00	114.45	281.44	900	0.1	36 10	3 6	67.278	1.05	0.42	0.96	1.01
		19	18			###	241.96	3.05	99.24	67.75		109.00	114.45	281.44	900	0.0	95 10	9 5	57.698	0.88	0.50	1	0.88
		18	17			###	241.96	3.05	99.24	67.75		109.00	114.45	281.44	900	0.1	42 7		681.838	1.07	0.41	0.955	1.02
From Kennametal		17	16			###	241.96	3.05	99.24	67.75	7.83	116.83	122.67	289.66	900	0.1		-	89.003	1.08	0.42	0.96	1.04
		16	15			###	241.96	3.05	99.24	67.75		116.83	122.67	289.66	900	0.0	958	_	35.764	0.68	0.66	1.06	0.73
From Herchimer		15	14	927	35.46		277.42	3.00	108.99	77.68	10.30	127.13	133.49	320.15	900	0.0			888.075	0.61	0.82	1.115	0.68
		14	13			###		3.00	108.99	77.68		127.13	133.49	320.15	900	0.1			59.877	1.04	0.49	0.99	1.03
		13	12			###	277.42	3.00	108.99	77.68		127.13	133.49	320.15	900	0.1	19 11		624.181	0.98	0.51	1	0.98
From Pier 31		12	11	108	5.72	###	283.14	3.00	110.11	79.28	0.81	127.94	134.34	323.73	900	0.0	086 11	-	530.624	0.83	0.61	1.04	0.87
		11	10			###	283.14	3.00	110.11	79.28		127.94	134.34	323.73	900	0.0	92 9	-	548.822	0.86	0.59	1.03	0.89
		10	9			###	283.14	3.00	110.11	79.28		127.94	134.34	323.73	900	0.	06 9	-	43.213	0.70	0.73	1.09	0.76
		9	8			###	283.14	3.00	110.11	79.28		127.94	134.34	323.73	900	0	.1 9	-	572.186	0.90	0.57	1.02	0.92
		8	7			###	283.14	3.00	110.11	79.28		127.94	134.34	323.73	900	0	.1 6		572.186	0.90	0.57	1.02	0.92
From MacDonald		7	-	4102	138.6		421.73	2.84	151.28	118.08	15.85	143.79	150.98	423.39	900	0.			67.668	1.21	0.55	1.02	1.23
		6	5			###	421.73	2.84	151.28	118.08		143.79	150.98	420.34	900	0			572.186	0.90	0.73	1.09	0.98
		5	4			###	421.73	2.84	151.28	118.08		143.79	150.98	420.34	900	0.		-	00.782	1.10	0.60	1.03	1.13
		4	3			###	421.73	2.84	151.28	118.08		143.79	150.98	420.34	900	0.	15 12		00.782	1.10	0.60	1.03	1.13
om Bioniche & S/A	4		2 (a)			###	421.73	2.84	151.28	118.08	12.71	156.50	164.33	433.69	900	0.		-	88.704	1.24	0.55	1.01	1.25
		2 (a)	2			###	421.73	2.84	151.28	118.08		156.50	164.33	433.69	900	0.	06 13		43.213	0.70	0.98	1.14	0.79
From Foster		2	1	36	1.19	###	422.92	2.83	151.63	118.42		156.50	164.33	434.37	900	0.		_	677.020	1.06	0.64	1.05	1.12
		1	WWTP)		###	422.92	2.83	151.63	118.42		156.50	164.33	434.37	900	0.	14 13	3 6	677.020	1.06	0.64	1.05	1.12

APPENDIX B Sanitary Design Flows – Hanley Park North

Hanley	Park North								Sanita	ry De	sign Sl	heet							1	CONSULTING
CITY OF	BELLEVILLE																	IN	IEY	ENGINEERS
Project:	18578-1	RATIC	DNAL	METHOD	_	Qtotal :	$= \mathbf{Q}\mathbf{p} + \mathbf{Q}$	0i	HARMON I	FORMULA						DESIGN ASS	SUMPTIONS			
		V	Where:	Qp = peak	population	flow (L/s)		M = 1 +	14	_		Des	ign Flow R	lates for area	a greater 50ha:	0.84 L/s/ha (i	incl. infiltr	ration)	
Revised:	January 23, 2020				[/86.4 (L/s]					$4 + \sqrt{P}$						al Population :		/unit	(2.5 Persons/Unit - To	ownhouses)
Prepared by:	CRS	where M = Harmon's Peak Factor Qi = peak extraneous flow (L/s) = i * A (L/s)										Residential (q) : 350 Lpcd Extraneous (i) : 0.28 L/s/ha N-value = 0.013								
	LOCATION						DI	ESIGN	FLOWS						SEWER	DATA				
AREA #	STREET	FROM MH	TO MH	# of	DIVIDUAL POP (persons)	AREA	CUMUL POP persons	AREA	PEAKING FACTOR (M)	RES Qp (L/s)	FLOWS EXTRAN Qi (L/s)		DIA. (mm)		LENGTH (m)	CAPACITY (L/s)	VELOCITY (m/s)	Q/Qcap %	Comn	nents
202	East of Spruce Gardens/Cul De S	lac	10	6	18	1.00	18	1.00	4.39	0.32	0.28	0.6								
201	East of Tessa Boulevard/Cul de S	Sac	15	150	422	10.00	422	10.00	4.01	6.85	2.80	9.6								

APPENDIX C FlowMetrix Monitoring Report

MERCEDES DR SEWER FLOW MONITORING FINAL REPORT

PREPARED FOR: AINLEY GROUP JANUARY 2019

Ainley Group – Flow Monitoring Final Report January 2019

Prepared by:

Flowmetrix Technical Services Inc. 15 Connie Crescent, Unit 5 Concord ON, L4K 1L3

www.flowmetrix.ca

Lan Min

Lawton McCracken, EIT Project Manager

hn

Jay Gong Data Analyst

Jordan Minos, C.E.T. Jr. Project Manager

Reviewed by:

Curtis King Vice-President

January 24, 2019

Caitlin Sheahan, M.Sc., P.Eng. Project Engineer Ainley Group 45 South Front Street Belleville, ON K8N 2Y5

Dear Ms. Sheahan,

Flowmetrix is pleased to present the following data report for the Mercedes Dr flow monitoring project, which consisted of two (2) flow meters for a period of 2 months.

All data results are outlined in the report. If after review of the report there are any questions or concerns regarding the content, please let me know at your earliest convenience.

We thank you for the opportunity to provide our services.

Sincerely,

Lan Min

Lawton McCracken, EIT Project Manager lawton@flowmetrix.com

Contents

List of Appendices	5
1. Introduction	6
2. Flow Monitoring	6
2.1 Site Location	6
2.2 Site Assessment	6
2.3 Site Installation	6
3. Data Collection	6
3.1 Equipment Specifications	6
3.2 Field-Level Data QA/QC	7
3.3 Data Analyst-level Data QA/QC	
4. Data Analysis	
4.1 Data Quality	
4.2 Data Corrections	9
4.3 Data Results	9
5. Graphical Analysis	10

List of Appendices

Appendix A	Installation Reports
Appendix B	Confirmation Reports
Appendix C	Hydrographs & Scatter Graphs

1. Introduction

Ainley Group (Ainley) retained Flowmetrix Technical Services Inc. (Flowmetrix) in October of 2018 to provide Real-Time Sewer Flow Monitoring services in two sanitary sewer maintenance holes. All data obtained from the monitors was available in near real-time on the FlowWorks remote Data Acquisition (RDA) platform.

The main objective of the flow monitoring program was the assessment, installation, maintenance and data acquisition of 2 flow monitoring locations for a duration of 2 months.

All data corrections were completed in-house by Flowmetrix staff. The correcting process involved weekly QA/QC, monthly correcting and any additional final correcting, if necessary. The built-in data correcting features in the RDA software gave analysts a variety of tools to correct raw data, so that the most accurate data is delivered.

2. Flow Monitoring

2.1 Site Location

The target manholes were located at the southern section of Haig Road and the western section of Keegan Parkway in Belleville, Ontario. The monitoring locations were 600mm and 900mm concrete sanitary inlet pipes.

2.2 Site Assessment

Ainley provided 2 site locations for assessment by Flowmetrix prior to the installation of the flow monitoring equipment. The sites were assessed based on hydraulic suitability and the condition of the infrastructure. Both locations were deemed suitable for flow monitoring.

2.3 Site Installation

The installations were completed on November 8, 2018 in the target location. Refer to Appendix A for Installation Reports.

3. Data Collection

3.1 Equipment Specifications

The ADS Triton+ monitor was selected for this project. This flow monitor is an area-velocity flow monitor that uses the Continuity equation to measure flow. The ADS Triton monitors consist of data acquisition sensors and a battery-powered microcomputer. The microcomputer includes a

processor unit, data storage, and an on-board clock to control and synchronize the sensor readings.

Figure 1 – ADS Triton Meter with Peak Combo Meter (shown below meter)

The Triton+ was paired with a Peak Combo Sensor, mounted at the invert of the pipe. The sensor includes three types of data acquisition technologies, as described below:

- 1. The up looking ultrasonic depth uses sound waves from two independent transceivers to measure the distance from the sensor upward toward the flow surface; applying the speed of sound in the water and the temperature measured by sensor to calculate depth.
- 2. The pressure depth is calculated by using a piezo-resistive crystal to determine the difference between hydrostatic and atmospheric pressure. The pressure sensor is temperature compensated and vented to the atmosphere through a desiccant filled breather tube.
- 3. To obtain peak velocity, the sensor sends an ultrasonic signal at an angle upward through the widest cross-section of the oncoming flow. The signal is reflected by suspended particles, air bubbles, or organic matter with a frequency shift proportional to the velocity of the reflecting objects. The reflected signal is received by the sensor and processed using digital spectrum analysis to determine the peak flow velocity.

The flow meters were synchronized to *Eastern Standard Time* and programmed to collect depth and velocity data at five (5) minute intervals and transmit the data via cellular telemetry at 12 hour intervals to the Remote Data Acquisition (RDA) application currently implemented using FlowWorks web-hosting site (<u>www.flowworks.com</u>).

3.2 Field-Level Data QA/QC

Data collections were done remotely via telemetry, if available, otherwise manually collected data was transferred to the Data Analysis Team. During the monitoring period, field crews performed routine maintenance verifying proper monitor operation and documenting field conditions. Refer to Appendix B for the Confirmation Report.

The following quality assurance steps are taken to assure the integrity of the collected data:

- Clock synchronization: Field crews synchronized monitor clocks to master clocks. Please note all flow monitoring data is in Eastern Standard Time (EST).
- Confirm depth and velocity readings: Field crews descended into meter manholes to manually measure depths and velocities and compare them to meter readings. If silt was present in the pipe invert, silt levels were measured.
- Confirm average velocities through cross-sectional velocity profiles: Since ADS velocity sensors measures peak velocity, field crews collected cross-sectional velocity profiles in order to develop a relationship between peak and average velocity to ensure that the hydraulic criteria were met.
- Upload and Review Data: Data collected from the monitor was uploaded and reviewed by a Data Analyst for completeness, outliers and deviations in the flow pattern, which indicate system anomalies or equipment failure.

3.3 Data Analyst-level Data QA/QC

Flowmetrix data analysts reviewed the data daily and the site was flagged for observations such as:

- No Telemetry Communication (i.e. no new data)
- Low Battery Voltage
- Depth Sensor Comparison
- Velocity Sensor Functionality
- Change in Typical Trend
- Response to Rain Events

Data analysts were responsible for issuing work orders if the site required service, or a regular maintenance call was required.

4. Data Analysis

Whether uploaded via telemetry, or manually, collected data was uploaded to the online RDA software. Data analysts had the ability to view the raw data collected by the meter and examine its integrity. Flowmetrix analysts were required to review both site verification records and comments provided during each visit. This technique would allow the analyst to identify any inconsistencies in the data collected by the monitor, and flag it for further investigation.

4.1 Data Quality

AA-Haig had good data quality for the duration of the monitoring period. The site experienced typical free-flow conditions.

AA-Keeg had good data quality for the majority of the monitoring period. There were minor periods of noise, likely caused by silt or pump action. The site experienced typical free-flow

conditions with occasional periods of pump action.

4.2 Data Corrections

All data analysis and corrections were made in-house by Flowmetrix analysts. Both field confirmations and site comments were used when making corrections to the data.

4.2.1 Flow Quantification

The flow quantification method used strictly for this monitoring project was the Continuity Equation. There are two main equations used to calculate open channel flow, the Continuity Equation and Manning's Equation.

4.2.2.1 Continuity Equation

The Continuity Equation, which is considered most accurate, can be used if both depth of flow and velocity are available.

$$Q = A \times V$$

Where,

- $Q = Flow (m^3/s)$
- A = Cross-sectional Flow Area (m²)
- V = Average Velocity (m/s)

4.3 Data Results

Data results are displayed with the exclusion of all zero (0) values. Zero (0) values in the data are a result of sensor ragging and equipment malfunctions. Average flow depth, velocity, and quantity data observed during the monitoring period of November 8, 2018 to January 16, 2018, are provided in the following table.

Table 1: AA-Haig Flow Data Results

Observed Flow Conditions									
Item	Depth (mm)	Velocity (m/s)	Quantity (l/s)						
Average	163	0.371	23.48						
Minimum	129	0.241	11.34						
Maximum	236	0.555	56.63						

Table 2: AA-Keeg Flow Data Results

Observed Flow Conditions									
Item	Depth (mm)	Velocity (m/s)	Quantity (I/s)						
Average	295	0.482	89.06						
Minimum	190	0.168	27.62						
Maximum	758	0.746	241.87						

5. Graphical Analysis

The following plots have been provided:

- 1. Monthly Hydrograph
 - a. Flow
 - b. Level
 - c. Velocity
- 2. Scatter Graph (entire monitoring period)
 - a. Level
 - b. Velocity

The hydrographs and scatter graphs for all monitoring locations are available in Appendix C.

APPENDIX A

INSTALLATION REPORTS

TECHNICAL SERVICES INC.

SITE INSTALLATION FORM

General Informa	ation				Site Details							
Project		Ainley-Me	ercedes Dr		Address		665 Dun	das St E				
Site Name		AA-I	Haig		Closest Intersection		Dundas St E	and Haig Ro	ł.			
Weather		Clo	udy		Access Detail	Right shoulder beside hydrant on Dundas St						
Date / Time		2018-11-	08 11:30		Traffic Control	Pedestrian Control Only						
Crew		Jordar	n/Scott		Atmospheric Hazard		none					
Work Type		Instal	lation		MH Chamber Conditions		Go	ood				
Task Status	Completed				Rim to Invert		28	66				
Pipe Details					Velocity Verifica	ation						
Details	Outlet	Inlet 1	Inlet 2	Inlet 3 / Overflow	Time	Туре	Manual	Peak	Surface			
Flow Condition	Laminar	Laminar			12:24:00 PM	Peak	0.35	0.38				
Pipe Height	600	600			12:24:00 PM	Peak	0.33	0.38				
Pipe Width	600	600			12:24:00 PM	Peak	0.36	0.38				
Pipe Shape	Circular	Circular			Velocity Profile							
Pipe Material	Concrete	Concrete			Time	Spot	Manual	Peak	Surface			
Flow Depth		150			12:22:00 PM	LC	0.33	0.39				
Velocity		0.36			12:22:00 PM	RC	0.27	0.43				
Silt Depth	50	40			12:22:00 PM	0.8	0.3	0.39				
Suitable	yes	yes				0.6						
Status	no	installed			12:22:00 PM	0.2	0.1	0.38				
Equipment Deta	ils			•	Depth Verificati	on	:		•			
Meter Type / S/N	Trit	on+	40	814	Time	Manual	UpDepth	Pdepth	Sdepth			
Sensor Type / S/N	Pe	eak	29	687	12:20:00 PM	151	155	154				
Physical Offset		7	0		12:20:00 PM	152	155	154				
SIM #		*07	375		12:20:00 PM	154	155	154				
Firmware		6.	15									

SITE INSTALLATION FORM

Site Vicinity	Chamber
Inlet	Outlet
Install	Meter
Extra A	Extra B

TECHNICAL SERVICES INC.

SITE INSTALLATION FORM

General Informa	ition				Site Details					
Project	Ainley-Mercedes Dr. (Belleville)				Address		South Fo	ster Park		
Site Name	44-K 660				Closest Intersection		Foster Ave.	and Wills St		
Weather		Clo	udy		Access Detail	In pa	arking lot at e	end of Foster	Ave.	
Date / Time		2018-11	-08 9:34		Traffic Control	Pedestrian Control Only				
Crew		Jordar	n/Scott		Atmospheric Hazard		No	one		
Work Type		Instal	lation		MH Chamber Conditions	Good				
Task Status		Comp	oleted		Rim to Invert	3839				
Pipe Details					Velocity Verifica	ition				
Details	Outlet	Inlet 1	Inlet 2	Inlet 3 / Overflow	Time	Туре	Manual	Peak	Surface	
Flow Condition	Laminar	Laminar			10:46:00 AM	Peak	0.55	0.56		
Pipe Height	900	900			10:46:00 AM	Peak	0.58	0.56		
Pipe Width	900	900			10:46:00 AM	Peak	0.56	0.56		
Pipe Shape	Circular	Circular			Velocity Profile					
Pipe Material	Concrete	Concrete			Time	Spot	Manual	Peak	Surface	
Flow Depth		250			10:45:00 AM	LC	0.4	0.55		
Velocity		0.56			10:45:00 AM	RC	0.44	0.56		
Silt Depth	0	0			10:45:00 AM 0.8 0.58 0		0.56			
Suitable	Yes	Yes			10:45:00 AM 0.6 0.44 0.56		0.56			
Status	No	Installed			10:45:00 AM	0.2	0.35	0.57		
Equipment Deta	ils			-	Depth Verification					
Meter Type / S/N	Trit	Triton+ 40927		Time	Manual	Updepth	Pdepth	Sdepth		
Sensor Type / S/N	Pe	ak	11222		10:44:00 AM	250	249	251		
Physical Offset	0			10:44:00 AM	252	249	251			
SIM #	*14699				10:44:00 AM	250	249	251		
Firmware		6.	15							
NOTES										
Battery 10.8V										

SITE INSTALLATION FORM

Site Vicinity	Chamber
Inlet	Outlet
Install	Meter
Extra A	Extra B

APPENDIX B

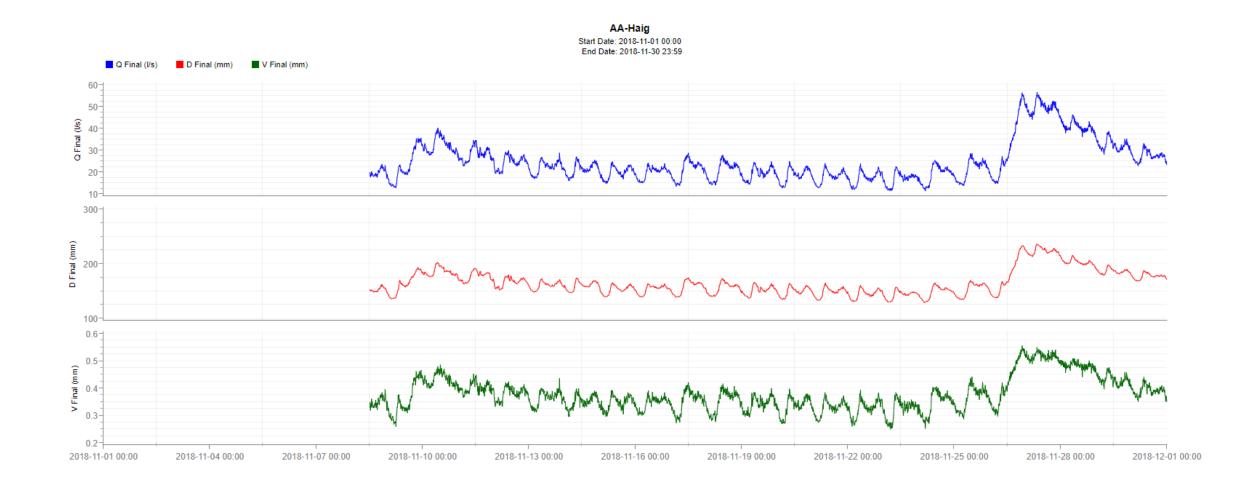
CONFIRMATION REPORTS

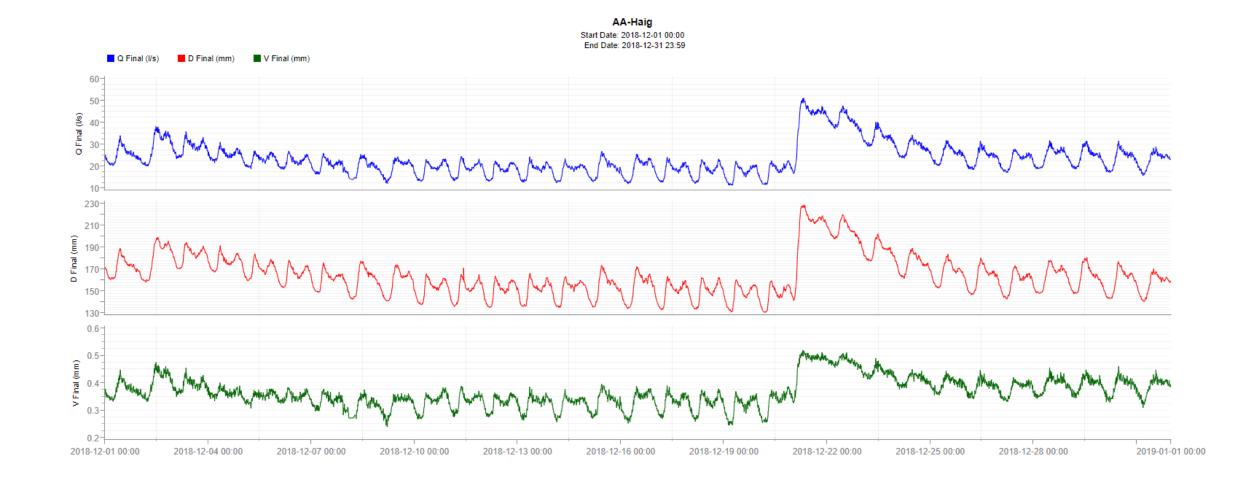
CONFIRMATION REPORTS

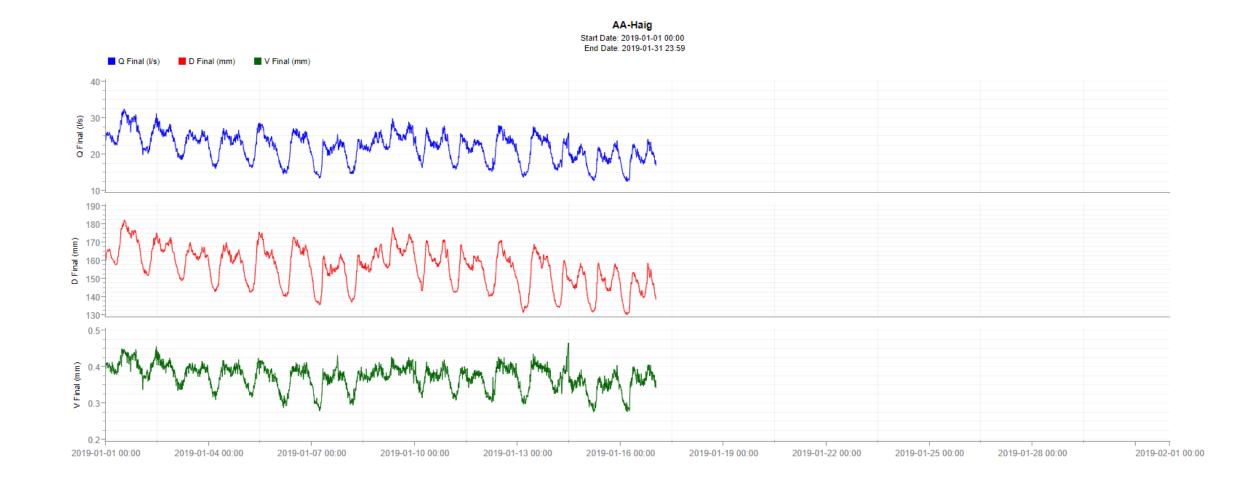
Site ID Work		Date	Status	Time	Level Verifications		Velocity Verifications		Commente
	work type				Manual	Depth	Manual	Peak	Comments
	Installation	2018-11-08	Completed	12:20	152	155	0.35	0.38	
	Maintenance	2018-11-27	Completed	10:37	248	234	0.5	0.58	
AA-Haig	Maintenance	2018-12-11	Completed	10:23	163	168	0.34	0.39	
	Maintenance	2018-12-20	Completed	10:22	150	154	0.32	0.41	
	Removal	2019-01-17	Completed	12:25	141	147	0.33	0.39	

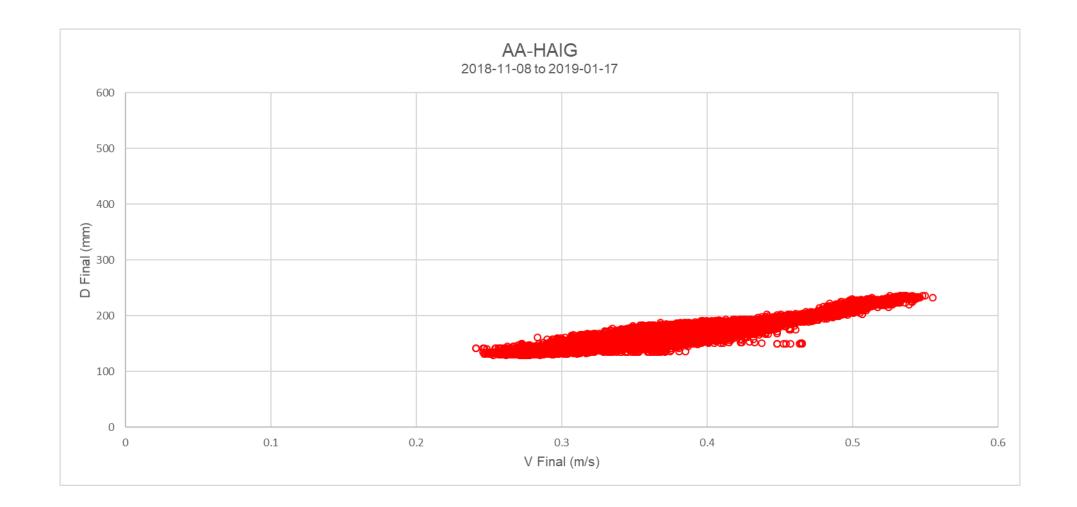
Site ID	Work Type	Date	Status	Time	Level Verifications		Velocity Verifications		Comments
					Manual	Depth	Manual	Peak	Comments
	Installation	2018-11-08	Completed	10:44	250	249	0.56	0.56	
	Maintenance	2018-11-27	Completed	10:15	479	480	0.68	0.64	
AA-Keeg	Maintenance	2018-12-11	Completed	9:59	286	285	0.53	0.49	
	Maintenance	2018-12-20	Completed	10:01	281	273	0.46	0.45	
	Removal	2019-01-17	Completed	11:28	286	290	0.44	0.42	

APPENDIX C

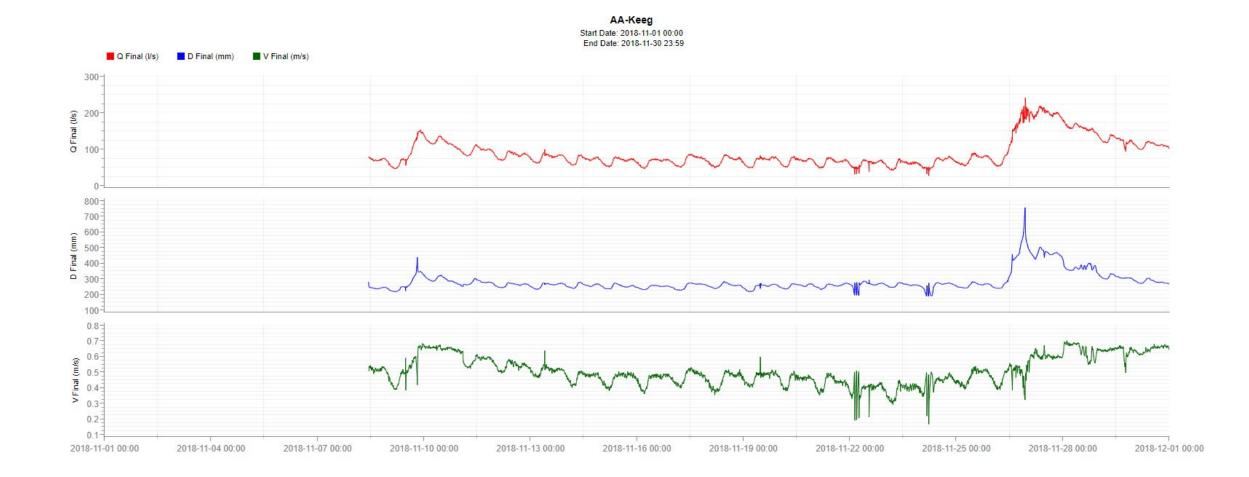

HYDROGRAPHS & SCATTER GRAPHS

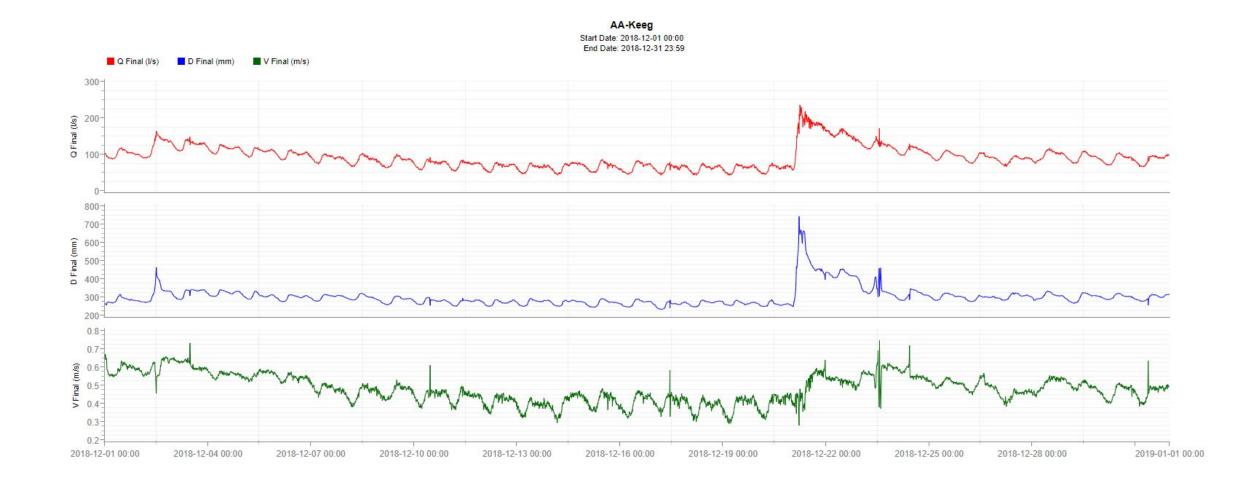

15 Connie Cres Unit 5 Concord, ON L4K 1L3 www.flowmetrix.ca

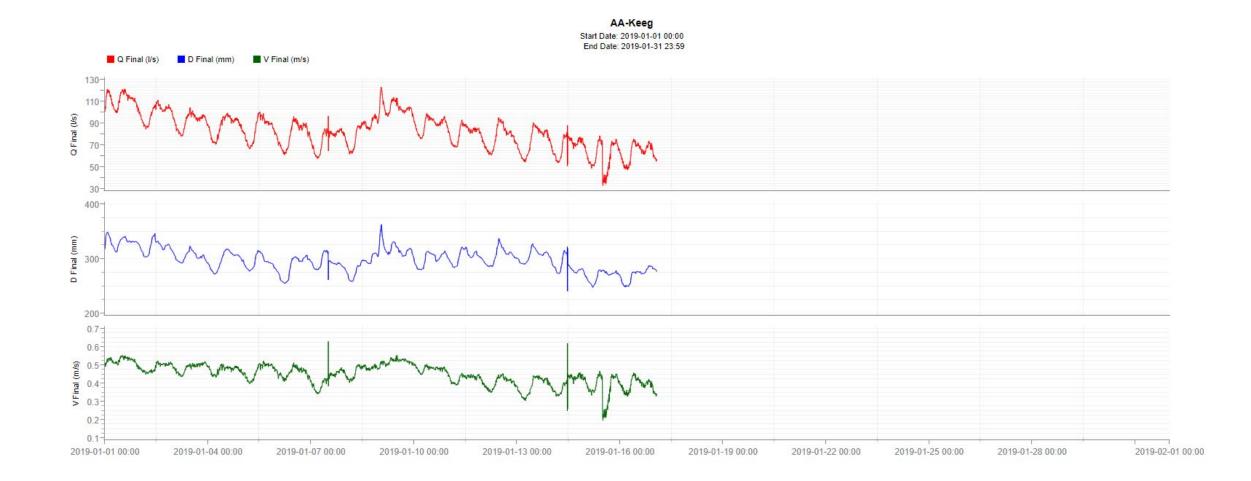

AA-HAIG

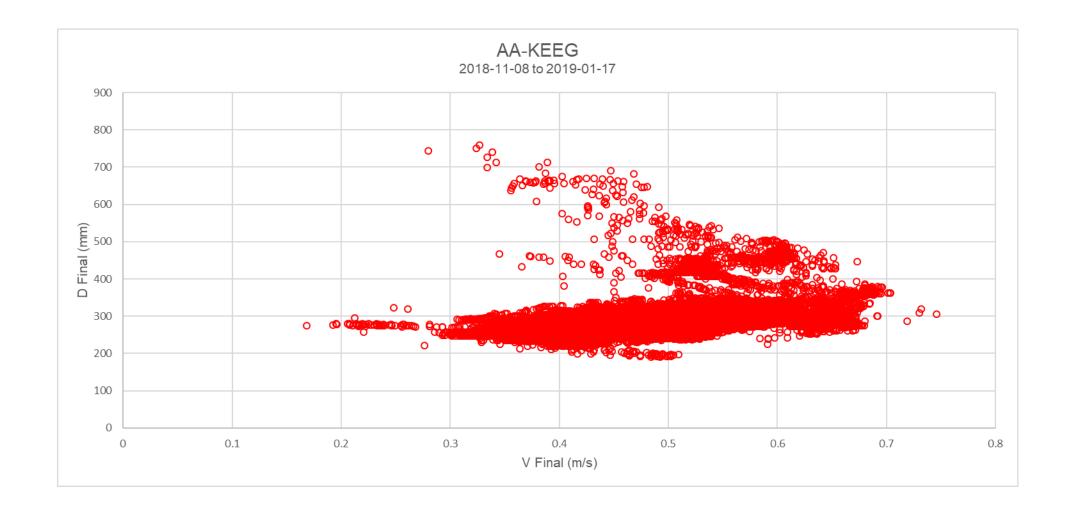

HYDROGRAPHS & SCATTER GRAPH

LONDON I TORONTO I TRENTON




15 Connie Cres Unit 5 Concord, ON L4K 1L3 www.flowmetrix.ca


AA-KEEG


HYDROGRAPHS & SCATTER GRAPH

LONDON I TORONTO I TRENTON

Flowmetrix Technical Services Inc. 15 Connie Cres, Unit 5 Concord, ON, L4K 1L3